Molecular basis of the interaction between proapoptotic truncated BID (tBID) protein and mitochondrial carrier homologue 2 (MTCH2) protein: key players in mitochondrial death pathway.

نویسندگان

  • Chen Katz
  • Yehudit Zaltsman-Amir
  • Yana Mostizky
  • Neta Kollet
  • Atan Gross
  • Assaf Friedler
چکیده

The molecular basis of the interaction between mitochondrial carrier homologue 2 (MTCH2) and truncated BID (tBID) was characterized. These proteins participate in the apoptotic pathway, and the interaction between them may serve as a target for anticancer lead compounds. In response to apoptotic signals, MTCH2 recruits tBID to the mitochondria, where it activates apoptosis. A combination of peptide arrays screening with biochemical and biophysical techniques was used to characterize the mechanism of the interaction between tBID and MTCH2 at the structural and molecular levels. The regions that mediate the interaction between the proteins were identified. The two specific binding sites between the proteins were determined to be tBID residues 59-73 that bind MTCH2 residues 140-161, and tBID residues 111-125 that bind MTCH2 residues 240-290. Peptides derived from tBID residues 111-125 and 59-73 induced cell death in osteosarcoma cells. These peptides may serve as lead compounds for anticancer drugs that act by targeting the tBID-MTCH2 interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial carrier homolog 2 is a target of tBID in cells signaled to die by tumor necrosis factor alpha.

BID, a proapoptotic BCL-2 family member, plays an essential role in the tumor necrosis factor alpha (TNF-alpha)/Fas death receptor pathway in vivo. Activation of the TNF-R1 receptor results in the cleavage of BID into truncated BID (tBID), which translocates to the mitochondria and induces the activation of BAX or BAK. In TNF-alpha-activated FL5.12 cells, tBID becomes part of a 45-kDa cross-lin...

متن کامل

VDAC2 is required for truncated BID-induced mitochondrial apoptosis by recruiting BAK to the mitochondria.

Truncated BID (tBID), a proapoptotic BCL2 family protein, induces BAK/BAX-dependent release of cytochrome c and other mitochondrial intermembrane proteins to the cytosol to induce apoptosis. The voltage-dependent anion channels (VDACs) are the primary gates for solutes across the outer mitochondrial membrane (OMM); however, their role in apoptotic OMM permeabilization remains controversial. Her...

متن کامل

Bid, a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity.

Bid is an abundant proapoptotic protein of the Bcl-2 family that is crucial for the induction of death receptor-mediated apoptosis in primary tissues such as liver. Bid action has been proposed to involve the relocation of its truncated form, tBid, to mitochondria to facilitate the release of apoptogenic cytochrome c. The mechanism of Bid relocation to mitochondria was unclear. We report here n...

متن کامل

Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis

We report here that BID, a BH3 domain-containing proapoptotic Bcl2 family member, is a specific proximal substrate of Casp8 in the Fas apoptotic signaling pathway. While full-length BID is localized in cytosol, truncated BID (tBID) translocates to mitochondria and thus transduces apoptotic signals from cytoplasmic membrane to mitochondria. tBID induces first the clustering of mitochondria aroun...

متن کامل

Single-chain antibody/activated BID chimeric protein effectively suppresses HER2-positive tumor growth.

BH3-interacting domain death agonist (BID) is a crucial element in death signaling pathways and is recognized as an intracellular link connecting the intrinsic mitochondrial apoptotic and extrinsic death receptor-mediated apoptotic pathways. Herein, we describe experiments conducted with a fusion protein, which was generated by fusing a human epidermal growth factor receptor-2 (HER2)-specific s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 18  شماره 

صفحات  -

تاریخ انتشار 2012